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Abstract 

With the use of van Hove's pair correlation function it is 
shown that, in the Born-Oppenheimer approximation, X-ray 
Bragg scattering is elastic and thermal diffuse scattering is 
inelastic. 

It is commonly assumed that X-ray Bragg scattering from 
crystals is elastic and that thermal diffuse scattering (TDS) is 
inelastic, but this appears to be proven only in the harmonic 
approximation of the atomic motions (Laval, 1941; von 
Laue, 1948). This assumption was recently doubted by 
Stewart (1977), who discussed vibrational averaging in the 
adiabatic theory of the electronic wave-functions and found 
two different expressions for Bragg scattering and for elastic 
scattering [Stewart (17) and (21)]. Such a result would imply 
that Bragg scattering is, in principle, not an observable 
quantity. On the other hand, the separation of the TDS 
background under the Bragg peak by means of M6ssbauer 
experiments and by calculating the ratio of elastic to inelastic 
scattering (B~irnighausen, 1975, 1978) is only meaningful if 
our above assumption is correct. We tried to prove it in a 
preceding paper (Scheringer, 1979; hereafter SCHE)but  did 
not fully achieve our aim. In this paper we shall give a 
complete derivation in the Born-Oppenheimer approxi- 
mation of the electronic wavefunctions. The appropriate 
means appears to be the particle pair-correlation function 
introduced by Van Hove (1954, hereafter VH) and Glauber 
(1955). This function contains the time dependence of the 
scattering, which plays the decisive role for the transfer of 
energy from the vibrating lattice to the X-ray, and vice versa. 
In some standard text books (James, 1948; Cochran, 1964; 
Maradudin, Montroll, Weiss & Ipatova, 1971; Willis & 
Pryor, 1975) the energy transfer is not fully treated (because 
of the smallness of the effect) and the presentations are 
centred on the calculation of the scattered intensity. The 
pair-correlation function has mainly been applied to the 
scattering of neutrons and is extensively described in this 
context (VH; Sj61ander, 1964; Marshall & Lovesey, 1971). 
For X-ray scattering we have to identify the particles with 
electrons and can then directly apply VH's theory. In our 
presentation we shall mainly follow VH and Sj61ander 
(1964). 

We proceed as follows: first we set up the basic equation 
for the coherent scattering of X-rays (partial differential 
cross section) and sort out the elastic contribution. Then we 
introduce the crystal as a three-dimensionally periodic 
distribution of electron density and show that the elastic part 
of the scattering from this density distribution follows 
Bragg's law. Finally we eliminate the non-Bragg scattering 
and show that it is inelastic and that its distribution in 
reciprocal space is essentially diffuse. 

We consider a system of M electrons, combine VH's 

equations (2), (4) and (6) [VH(2) etc.], introduce the 
Thomson scattering length e2/mc 2 for the scattering of 
X-rays by an electron, and obtain, in the first Born 
approximation, for the coherent partial differential cross 
section 

(92(7 t =Mf. e212q ' 1 

+ o o  

X f f exp(iK.x-iogt) G(x,t)dxdt. 
-oo (1) 

We have omitted the polarization factor in (1), since it is 
commonly introduced in the stage of data reduction, q and q' 
are the absolute values of the wavevectors of the incident and 
scattered photon respectively, and the conservation laws for 
energy and quasi-momentum apply (VH; Sj61ander, 1964; 
Cochran & Cowley, 1967). G(x,t)  is the space/time- 
dependent pair-correlation function for the electrons in the 
system, and is given by 

if G(x,t) = ~ </~(x', 0)/~(x + x', t) ) dx', (2) 

where 
M 

/~(x, t ) =  ~ 6 [ x -  Xj(t)] (3) 
J = l  

is the charge density operator and Xj( t)  is a Heisenberg 
operator. For different times these operators do not 
commute. The angle brackets denote the average over all 
initial thermal states and thus form the time average. The 
summation over all final states of the system (which are in 
agreement with the conservation laws) is already contained 
in G(x,t). The Born-Oppenheimer approximation is only 
implicitly contained in G(x,t). The Heisenberg operators 
X](t) of (3) contain the position vectors xj of the electrons 
and the Hamiltonian of the system. The total wavefunction 
for the Hamiltonian may be separated into an electronic and 
a nuclear wavefunction according to the Born-Oppenheimer 
approximation. In contradistinction to VH(10) we have 
chosen an alternate formulation of G(x,t) in (2), as was given 
by Sjtlander (2.2) and (2.3), which reveals the similarity to 
the Patterson function in the space variable x. Equation (1) 
shows that the cross section is essentially given by the 
four-dimensional space/time Fourier transform of the cor- 
relation function G(x,t). 

The separation of the cross section according to elastic 
and inelastic parts, which is our main concern, can be 
obtained with VH by considering the limit I tl = oo and so 
gaining that part of the scattering which does not depend on 
the time t. With I tl : oo the/~ operators in (2) are statistically 
independent and, therefore, the average of the product is 
identical with the product of the averages. In the time 
average (/$(x + x', t)) time is no longer relevant and the 
operators/~ become particle densities p which now commute. 
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Hence, from (2) we obtain for the limit I tl = 

af G(x, oo) = - ~  <p(x')> <p(x + x')> dx', (4) 

corresponding to VH(20). G(x, oo) gives rise to elastic 
scattering only, which is shown as follows. We use the 
Fourier representation of the 6 function 

'f 6(co) = ~--~ exp (-icot) dt, (5) 

introduce (4) and (5) in (1), and obtain 

k ~--~-~ ]¢oh {02al~l~t--fe21:6(c°)fexp(iK --' --~c~ ] .x) 

x ( < p ( x ) )  <p(x + x')> dx' dx. (6) 

(6) is consistent only with co = 0, or with 

hco = hco(q) - hco(q') = O, 

whereby the property of elastic scattering is proven. We 
further deduce from (6) that coherent elastic scattering arises 
from the convolution of (p(x)) with (p(--x));  this con- 
volution product is known as the Patterson function. It is 
expedient to eliminate the convolution integral in (6), and 
also the dependence on 09, which is of no further interest. 
Thus, we integrate over co, reformulate the double integral 
and obtain 

( 9 ~ )  elast e(--m~c2)21f 12 = exp( iK.x)(p(x))  dx , (7) 
eoh 

corresponding to the first term of VH(23). 
Hitherto our consideration was a general one. To derive 

Bragg intensities we have to introduce the condition that the 
system of electrons represents a crystal, i.e. that the 
electron distribution is periodic on average. Thus, our 
condition is 

(p(~))  = (p(x + O>, (8) 

where ! is a lattice vector, f f  we introduce (8) into (7), we 
obtain the Bragg intensity and structure factor as follows. 
For a crystal with N cells, the integral in (7) assumes the 
form 

N 
~ exp (iK. I) J (p(x)) exp (iK. x) dx. (9) 

l=  1 cell 

With (9) introduced into (7), we obtain for a sufficiently large 
N 

=\~{c2]  N 2 6 ( K - - H ) I F ( K ) I  2, (10) 

where H is a vector in the reciprocal lattice, and 

F(K)  = f (p(x)) exp(iK.x) dx. (11) 
cell 

The di function in (10) shows that, for a (sufficiently large) 
crystal, elastic scattering follows Bragg's law. The term 

IF(K)I 2 in (10) shows F(K)  to be the structure factor, and 
with (11) we see that the structure factor is the Fourier 
transform of the average density in the unit cell. Hence, (10) 
corresponds to our earlier result SCHE( l l a ) ,  and (11) to 
SCHE(1 lb). 

In order to obtain the non-Bragg scattering we subtract 
the Bragg scattering from the total scattering and thus define 
with VH(22) 

G'(x,t) = G ( x , t ) -  G(x, oo). (12) 

To show that this part gives rise to inelastic scattering, we 
have to introduce G'(x,t) instead of G(x,t) in (1). Since 
G'(x,t)  depends on time we shall never obtain a 6 function of 
09 in (1), like the one in (6). Hence, we shall never obtain co = 
0 for a finite part of the non-Bragg scattering, and thus this 
scattering is inelastic, and q' ~ q. To complete our proof we 
have to show that inelastic scattering is essentially diffuse in 
reciprocal space, and does not show sharp maxima like the 
Bragg peaks. The spatial distribution of the inelastic 
scattering can conveniently be discussed by considering the 
corresponding density distribution and then its Fourier 
transform. We shall do this in the static approximation, t = 
0, which we also used in SCHE. With SCHE(5) we divide the 
density according to p = ~p) + Ap and, with SCHE(6), 
obtain only two parts of G(x). The first part gives rise to the 
Bragg scattering, the second to the non-Bragg, i.e. inelastic 
scattering. This second part is (in the static approximation) 

Gr-,lnel =_~_ f ,~')co, (Ap(x')  Ap(x + x ' ) )  dx'. (13) 

Apart from the factor I/M, (13) represents the inverse 
Fourier transform of the second term in SCHE(10). (13) also 
has the form of a Patterson function, but here it refers to the 
non-periodic part of the density distribution in the crystal, 
Ap. For x = 0 t'7.tvhinel has a high peak, and for increasing Ixl v x.AICO h 

G¢v~Inel flattens out but retains a certain structure with ~.A:coh 
positive and negative regions. This remaining structure 
corresponds to the coupling of the thermal motions of the 

/'~,.[v~Inel becomes zero atoms in the crystal. For Ixl --, oo ,.,~AJcoh 
because Ap(x') and Ap(x + x') in (13) are no longer 
correlated and the thermal average becomes 
(Ap(x'))(Ap(x + x')), which is zero by virtue of the 
definition of Ap, cf. SCHE(6). Hence, the Fourier transform 
of (13) is essentially flat, i.e. the thermal coherent inelastic 
scattering is diffuse (TDS). There are certain singularities in 
the TDS spectrum (critical points) which are due to a 
possible slow convergence of G(x)Icn~ (for Ixl --, oo) and to the 
periodic structure of the crystal (Van Hove, 1953, 1954; 
Maradudin, Montroll, Weiss & Ipatova, 1971, pp. 150--166). 

We have shown that coherent elastic X-ray scattering 
from crystals is Bragg scattering and that thermal coherent 
inelastic scattering is diffuse. Since, in our consideration, 
there are no other types of scattering, we can also state the 
reverse, namely, that Bragg scattering is elastic and TDS is 
inelastic. 

What then is the solution of the discrepancy of Stewart's 
(1977) equations, where (17) stands for Bragg scattering and 
(21) for elastic scattering? Firstly, Stewart generalizes the 
concept of Bragg scattering so that it can be applied to 
systems which no longer represent a crystal (for a crystallog- 
rapher a very unorthodox generalization) and defines Bragg 
scattering to be the scattering from the thermodynamic 
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average, (p(x)). Stewart (1979) found that, for systems with 
a small number of particles, his (1977) equations (17) and 
(21) indeed lead to different intensities. Thus for small 
systems other configurations than the thermodynamic 
average can also contribute to elastic scattering. Hence, for 
small systems, Bragg scattering may thus not be an 
observable quantity. VH also refers to the case of small 
systems: the asymptotic convergence for I tl --, oo, our 
equation (4), may then hold only in the mean. In the 
meantime Stewart (1979) has been able to convince himself 
that, for large systems, his (1977) equations (17) and (21) 
lead to the same intensity. Thus, for a crystal where the 
number of particles is very large, Bragg scattering and elastic 
scattering always coincide. 
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Commission on Crystallographic Apparatus 

IUCr X-ray Attenuation Project 

At the International Union of Crystallography Congress 
which was held in Warsaw in 1978, the Commission on 
Crystallographic Apparatus decided that there was a need to 
evaluate the techniques for the measurement of X-ray 
attenuation coefficients. A committee was set up to organize 
the project, and planning for the project is now well advanced. 

It is the aim of the organizing committee to encourage the 
participation in the project of laboratories using a diverse 
range of techniques of measurement. For example, sources 
of incident X-ray beams which are to be used range from 
synchrotron radiation sources to radio-isotope sources. A 
diverse range of detection systems are also to be used. 

All laboratories participating in the project will receive 
standard specimens from the project organizers and will be 
required to answer detailed questions about their equipment, 
techniques of measurement and their analysis of the experi- 
mental results. The first specimen will be silicon. Later 
specimen sets will include germanium, magnesium and 
pyrolytic graphite. 

Any laboratory interested in participating in the project 
should contact: Dr D. C. Creagh, Chairman, IUCr X-ray 
Attenuation Project, Physics Department, Royal Military 
College, Duntroon, ACT 2600, Australia. 
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President's Fund 

Members of the crystallographic community are reminded 
that a President's Fund was established by the International 
Union of Crystallography in 1977, as suggested by Professor 
Hodgkin at the 1975 General Assembly. The fund is intended 
for use in emergency and in special or difficult circumstances, 
to help crystallographers to take part in the activities of the 
Union, and is operated by the President and the General 
Secretary and Treasurer of the Union. 

The Executive Committee is most grateful to those 
crystallographers who have already made donations to the 
fund. Any further donations may be sent to the Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 
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Structure Reports 

Volume 44A of Structure Reports has recently been pub- 
lished. It covers the literature for metals and inorganic com- 
pounds for 1978 (vi + 387 pages), and costs 102 Dutch 
guilders for subscribers with standing orders. The full price 
for individual copies is 120 guilders but personal subscribers 
may buy a copy for their own use at 60 guilders. Volume 
43B will be published in mid 1980 and Volume 45A towards 
the end of the year. 


